Keras

Keras Pre-Trained Models

Keras Pre-Trained Models

There are some pre-trained models in Keras as follows:

  • MobileNetV2: This model can be trained using ImageNet. The syntax if this model is as shown below:
​​​​​​​keras.applications.mobilenet_v2.MobileNetV2 (
   alpha = 1.0, 
   input_shape = None, 
   include_top = True, 
   input_tensor = None, 
   pooling = None, 
   weights = 'imagenet', 
   classes = 800
)

VGG16: This model is also trained using ImageNet and the syntax is shown below:

keras.applications.inception_v3.InceptionV3 (
   include_top = True, 
   pooling = None, 
   classes = 2000
   weights = 'imagenet', 
   input_tensor = None, 
   input_shape = None, 
)
  • InceptionV3:The syntax for this model is given below:

keras.applications.inception_v3.InceptionV3 (
   include_top = True, 
   pooling = None, 
   classes = 2000
   weights = 'imagenet', 
   input_tensor = None, 
   input_shape = None, 
)
  • InceptionResNetV2: This model can be loaded using the syntax below:
keras.applications.inception_resnet_v2.InceptionResNetV2 (
   include_top = True, 
   input_tensor = None, 
   input_shape = None, 
   weights = 'imagenet',
   pooling = None, 
   classes = 2000
)

 

Top course recommendations for you

    Docker Swarm Project
    1 hrs
    Beginner
    861 Learners
    4.44  (27)
    Collections in Java
    3 hrs
    Beginner
    5K+ Learners
    4.46  (374)
    PyCharm for Beginners
    1 hrs
    Beginner
    2.9K+ Learners
    4.39  (161)
    Git Tutorial
    2 hrs
    Beginner
    10.7K+ Learners
    4.55  (830)
    Create a IPL theme Landing page with CSS and HTML
    1 hrs
    Beginner
    7K+ Learners
    4.3  (330)
    PyTest Basics
    2 hrs
    Beginner
    2.8K+ Learners
    4.42  (146)
    Python MySQL
    1 hrs
    Beginner
    12.4K+ Learners
    4.46  (595)
    Python Automation Project
    2 hrs
    Beginner
    7.1K+ Learners
    4.57  (243)
    Python For Android
    2 hrs
    Beginner
    5.4K+ Learners
    4.51  (144)
    Kivy Projects
    2 hrs
    Beginner
    1.9K+ Learners
    4.5  (56)